ProV Logo
0

Temporal Network Optimization Subject to...
Mertzios, George B....
Temporal Network Optimization Subject to Connectivity Constraints by Mertzios, George B. ( Author )
Australian National University
07-09-2023
In this work we consider \emph{temporal networks}, i.e. networks defined by a \emph{labeling} $\lambda$ assigning to each edge of an \emph{underlying graph} $G$ a set of \emph{discrete} time-labels. The labels of an edge, which are natural numbers, indicate the discrete time moments at which the edge is available. We focus on \emph{path problems} of temporal networks. In particular, we consider \emph{time-respecting} paths, i.e. paths whose edges are assigned by $\lambda$ a strictly increasing sequence of labels. We begin by giving two efficient algorithms for computing shortest time-respecting paths on a temporal network. We then prove that there is a \emph{natural analogue of Menger's theorem} holding for arbitrary temporal networks. Finally, we propose two \emph{cost minimization parameters} for temporal network design. One is the \emph{temporality} of $G$, in which the goal is to minimize the maximum number of labels of an edge, and the other is the \emph{temporal cost} of $G$, in which the goal is to minimize the total number of labels used. Optimization of these parameters is performed subject to some \emph{connectivity constraint}. We prove several lower and upper bounds for the temporality and the temporal cost of some very basic graph families such as rings, directed acyclic graphs, and trees.
-
Article
pdf
29.34 KB
English
-
MYR 0.01
-
http://arxiv.org/abs/1502.04382
Share this eBook