ProV Logo
0

Explosive condensation in symmetric mass...
Chau, Yu-Xi...
Explosive condensation in symmetric mass transport models by Chau, Yu-Xi ( Author )
N.A
30-08-2015
We study the dynamics of condensation in a misanthrope process with nonlinear jump rates and factorized stationary states. For large enough density, it is known that such models have a phase separated state, with a non-zero fraction of the total mass concentrating in a single lattice site. It has been established in [B Waclaw and M R Evans, Phys. Rev. Lett., 108(7):070601, 2012] for asymmetric dynamics that such processes exhibit explosive condensation, where the time to reach the stationary state vanishes with increasing system size. This constitutes a spatially extended version of instantaneous gelation which has previously been studied only in mean-field coagulation models. We show that this phenomenon also occurs for symmetric dynamics in one dimension if the non-linearity is strong enough, and we find a coarsening regime where the time to stationarity diverges with the system size for weak non-linearity. In higher space dimensions explosive condensation is expected to be generic for all parameter values. Our results are based on heuristic mean field arguments which are confirmed by simulation data.
-
Article
pdf
36.88 KB
English
-
MYR 0.00
-
https://arxiv.org/abs/1508.07516
Share this eBook