ProV Logo
0

Spectral concentration and greedy k-clus...
Dey, Tamal K....
Spectral concentration and greedy k-clustering by Dey, Tamal K. ( Author )
Australian National University
01-09-2023
A popular graph clustering method is to consider the embedding of an input graph into R^k induced by the first k eigenvectors of its Laplacian, and to partition the graph via geometric manipulations on the resulting metric space. Despite the practical success of this methodology, there is limited understanding of several heuristics that follow this framework. We provide theoretical justification for one such natural and computationally efficient variant. Our result can be summarized as follows. A partition of a graph is called strong if each cluster has small external conductance, and large internal conductance. We present a simple greedy spectral clustering algorithm which returns a partition that is provably close to a suitably strong partition, provided that such a partition exists. A recent result shows that strong partitions exist for graphs with a sufficiently large spectral gap between the k-th and (k+1)-st eigenvalues. Taking this together with our main theorem gives a spectral algorithm which finds a partition close to a strong one for graphs with large enough spectral gap. We also show how this simple greedy algorithm can be implemented in near-linear time for any fixed k and error guarantee. Finally, we evaluate our algorithm on some real-world and synthetic inputs.
-
Article
pdf
29.34 KB
English
-
MYR 0.01
-
http://arxiv.org/abs/1404.1008
Share this eBook