ProV Logo
0

A note on the non-commutative arithmetic...
Zhang, Teng...
A note on the non-commutative arithmetic-geometric mean inequality by Zhang, Teng ( Author )
Australian National University
06-09-2023
This note proves the following inequality: if $n=3k$ for some positive integer $k$, then for any $n$ positive definite matrices $A_1,A_2,\cdots,A_n$, \begin{equation} \frac{1}{n^3}\Big\|\sum_{j_1,j_2,j_3=1}^{n}A_{j_1}A_{j_2}A_{j_3}\Big\| \geq \frac{(n-3)!}{n!} \Big\|\sum_{\substack{j_1,j_2,j_3=1,\\\text{$j_1$, $j_2$, $j_3$ all distinct}}}^{n}A_{j_1}A_{j_2}A_{j_3}\Big\|, \end{equation} where $\|\cdot\|$ represents the operator norm. This inequality is a special case of a recent conjecture by Recht and R\'e.
-
Article
pdf
29.34 KB
English
-
MYR 0.01
-
http://arxiv.org/abs/1411.5058
Share this eBook