ProV Logo
0

Viscoelastic fluid flow in a 2D channel ...
Chakraborty, Debadi...
Viscoelastic fluid flow in a 2D channel bounded above by a deformable finite thickness elastic wall by Chakraborty, Debadi ( Author )
N.A
11-02-2015
The steady flow of three viscoelastic fluids (Oldroyd-B, FENE-P, and Owens model for blood) in a two-dimensional channel, partly bound by a deformable, finite thickness neo-Hookean solid, is computed. The limiting Weissenberg number beyond which computations fail to converge is found to increase with increasing dimensionless solid elasticity parameter {\Gamma}, following the trend Owens > FENE- P > Oldroyd-B. The highly shear thinning nature of Owens model leads to the elastic solid always collapsing into the channel, for the wide range of values of {\Gamma} considered here. In the case of the FENE-P and Oldroyd-B models, however, the fluid-solid interface can be either within the channel, or bulge outwards, depending on the value of {\Gamma}. This behaviour differs considerably from predictions of earlier models that treat the deformable solid as a zero-thickness membrane, in which case the membrane always lies within the channel. The capacity of the solid wall to support both pressure and shear stress, in contrast to the zero-thickness membrane that only responds to pressure, is responsible for the observed difference. Compar- ison of the stress and velocity fields in the channel for the three viscoelastic fluids, with the predictions for a Newtonian fluid, reveals that shear thinning rather than elasticity is the key source of the observed differences in behaviour.
-
Article
pdf
36.88 KB
English
-
MYR 0.01
-
https://arxiv.org/abs/1502.03210
Share this eBook